Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Eye (Lond) ; 38(3): 529-536, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37684376

RESUMO

OBJECTIVE: To report the identification and results of susceptibility testing for fungal isolates from the cornea or contact lens care systems. MATERIALS AND METHODS: In this retrospective epidemiological study, we searched the results of fungal cultures from cornea or contact lens systems referred for identification and susceptibility testing to the United Kingdom National Mycology Reference Laboratory between October 2016 and March 2022. For each fungal isolate, we recorded the genus and species of the fungus and the minimum inhibitory concentration (MIC) to six antifungal agents available to treat corneal infection (amphotericin, econazole, itraconazole, natamycin, posaconazole, and voriconazole). RESULTS: There were 600 isolates from 585 patients, comprising 374 (62%) from corneal samples and 226 from contact lenses and care systems, of which 414 (69%) isolates were moulds (filamentous fungi) and 186 (31%) were yeasts. The most frequent moulds isolated were Fusarium spp (234 isolates, 39%) and Aspergillus spp (62, 10%). The most frequent yeasts isolated were Candida spp (112, 19%), predominantly Candida parapsilosis (65, 11%) and Candida albicans (33, 6%), with 35 isolates (6%) of Meyerozyma guilliermondii. In vitro susceptibility was greatest for natamycin (347 moulds tested, mode 4 mg/L, range 0.25-64 mg/L; 98 yeasts tested, mode 4 mg/L, range 0.5-32 mg/L), with susceptibility for 94% for moulds and 99% yeasts. Of the 16 isolates interpreted as highly resistant to natamycin (MIC ≥16 mg/L), 13 were Aspergillus flavus complex. CONCLUSIONS: In vitro susceptibility supports the use of natamycin for the empiric treatment of fungal keratitis in the UK.


Assuntos
Antifúngicos , Natamicina , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Natamicina/farmacologia , Estudos Retrospectivos , Voriconazol , Fungos , Córnea , Aspergillus , Testes de Sensibilidade Microbiana
2.
J Ocul Pharmacol Ther ; 40(1): 67-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38117668

RESUMO

Purpose: Natamycin (NT) is used as a first-line antifungal prescription in the treatment of fungal keratitis (FK) and is commercially available as a 5% w/v ophthalmic suspension. NT shows poor water solubility and light sensitivity. Thus, the present investigation is aimed to enhance the fraction of NT in solution in the commercial formulation by adding cyclodextrins (CDs), thereby improving the delivery of the drug into deeper ocular tissues. Methods: The solubility of NT in different CDs, the impact of ultraviolet (UV) light exposure, stability at 4°C and 25°C, in vitro release, and ex vivo transcorneal permeation studies were performed. Results: NT exhibited the highest solubility (66-fold) in randomly methylated-ß-cyclodextrin (RM-ßCD) with hydroxypropyl-ßCD (HP-ßCD) showing the next highest solubility (54-fold) increase in comparison to market formulation Natacyn® as control. The stability of NT-CD solutions was monitored for 2 months (last-time point) at both storage conditions. The degradation profile of NT in NT-RM-ßCD and NT-HP-ßCD solutions under UV-light exposure followed first-order kinetics exhibiting half-lives of 1.2 h and 1.4 h, respectively, an almost 3-fold increase over the control solutions. In vitro release/diffusion studies revealed that suspensions containing RM-ßCD and HP-ßCD increased transmembrane flux significantly (3.1-fold) compared to the control group. The transcorneal permeability of NT from NT-RM-ßCD suspension exhibited an 8.5-fold (P < 0.05) improvement compared to Natacyn eyedrops. Furthermore, the addition of RM-ßCD to NT suspension increases the solubilized fraction of NT and enhances transcorneal permeability. Conclusion: Therefore, NT-RM-ßCD formulations could potentially lead to a decreased frequency of administration and significantly improved therapeutic outcomes in FK treatment.


Assuntos
Úlcera da Córnea , Ciclodextrinas , Infecções Oculares Fúngicas , Humanos , Natamicina/farmacologia , Natamicina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Infecções Oculares Fúngicas/tratamento farmacológico , Solubilidade , Úlcera da Córnea/tratamento farmacológico , Suspensões
3.
J Agric Food Chem ; 71(46): 17713-17722, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943656

RESUMO

In this investigation, the antifungal activity, its influence on the quality of apples, and the molecular mechanism of natamycin against Colletotrichum fructicola were systematically explored. Our findings indicated that natamycin showed significant inhibition against C. fructicola. Moreover, it efficaciously maintained the apple quality by modulating the physicochemical index. Research on the antifungal mechanism showed that natamycin altered the mycelial microstructure, disrupted the plasma membrane integrality, and decreased the ergosterol content of C. fructicola. Interestingly, the exogenous addition of ergosterol weakened the antifungal activity of natamycin. Importantly, natamycin markedly inhibited the expression of Cyp51A and Cyp51B genes in C. fructicola, which was contrary to the results obtained after treatment with triazole fungicide flusilazole. All these results exhibited sufficient proof that natamycin had enormous potential to be conducive as a promising biopreservative against C. fructicola on apples, and these findings will advance our knowledge on the mechanism of natamycin against pathogenic fungi.


Assuntos
Colletotrichum , Malus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Natamicina/farmacologia , Natamicina/metabolismo , Colletotrichum/metabolismo , Malus/metabolismo , Ergosterol
4.
Acta Biomater ; 169: 398-409, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579912

RESUMO

Fungal keratitis (FK) is a severe infectious corneal disease. Since traditional eye drops exhibit poor dissolution and high corneal toxicity, the efficacy of current treatments for FK remains limited. It is needed to develop new approaches to control the cornea damage from FK. In this study, a nanobody (Nb) specific to ß-glucan in the fungal cell wall was prepared. The conjugate of the Nb with natamycin (NAT), a traditional antifungal drug, was synthesized. Firstly, we found the Nb specific to ß-glucan inhibited fungal growth by disrupting cell wall and biofilm formation.. In addition, the content of ß-glucan in the fungal cell wall decreased after Nb treatment. The Nb also reduced the adhesion ability of fungal conidia to human corneal epithelial cells (HCECs). Further, we examined the difference between NAT and Nb-NAT in antifungal growth. Nb-NAT showed better antifungal effects than NAT which was caused by the interaction between Nb and ß-glucan. Moreover, Nb concentration below 0.5 mg/mL did not affect the viability of HCECs. Nb-NAT had less cytotoxicity and ocular surface irritation than NAT. Nb specific to ß-glucan attenuated Aspergillus fumigatus (A. fumigatus) virulence and relieved inflammatory responses in FK. Nb-NAT treatment of the cornea improved therapeutic effects compared with NAT. It decreased clinical scores and expression level of inflammatory factors. To our knowledge, this study is the first to report a Nb specific to ß-glucan and Nb-NAT for the treatment of FK. These unique functions of the Nb specific to ß-glucan and Nb-NAT would render it as an alternative molecule to control fungal infections including FK. STATEMENT OF SIGNIFICANCE: Fungal keratitis is a corneal disease with a high rate of blindness. Due to the poor dissolution and high corneal toxicity exhibited by traditional eye drops, the efficacy of current therapeutic treatments for fungal keratitis (FK) remains limited. To enhance the therapeutic effect of natamycin in treating fungal keratitis, this study developed an innovative approach by preparing a ß-glucan-specific nanobody and loading it with the antifungal drug natamycin. The ß-glucan-specific nanobody has the ability to control both fungal pathogen invasion and inflammation, which can cause damage to the cornea in FK. The conjugation with the ß-glucan-specific nanobody significantly increased the antifungal capacity of natamycin and reduced its toxicity. The further application of natamycin conjugated with the ß-glucan-specific nanobody could be expanded to other diseases caused by fungal pathogen infections.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Anticorpos de Domínio Único , Humanos , Antifúngicos/farmacologia , Natamicina/farmacologia , Natamicina/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Soluções Oftálmicas
5.
Int J Biol Macromol ; 246: 125685, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406906

RESUMO

In this study, gliadin-carboxymethyl chitosan composite nanoparticles (GC NPs) co-encapsulated natamycin (Nata) and theaflavins (TFs) were constructed and added as an antioxidant, antifungal, and structural enhancer to carboxymethyl chitosan (CMCS) films. The stabilized GC NPs with a particle size of 160.7 ± 2.8 nm, a zeta potential of -29.0 ± 0.9 mV, and a protein content in the supernatant of 96 ± 1 % could be fabricated. Tests of pH and salt ions showed that the stability of NPs dispersion was based on electrostatic repulsion. Co-encapsulation of TFs enhanced the photostability of Nata and the antioxidant activity of the NPs dispersion. The interactions between gliadin with Nata and TFs were studied by molecular simulations. As a functional additive, the addition of Nata/TFs-GC NPs could improve the optical properties, mechanical properties, water-blocking capability, and antifungal and antioxidant activities of the CMCS films. The in-vivo test showed that the functional film could be used to inhibit the growth of Aspergillus niger on cheese.


Assuntos
Queijo , Quitosana , Nanopartículas , Natamicina/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Gliadina , Quitosana/química , Queijo/microbiologia , Nanopartículas/química , Embalagem de Alimentos
6.
Plant Dis ; 107(11): 3602-3607, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37272052

RESUMO

Mucor rot caused by Mucor piriformis is an emerging postharvest disease of mandarin fruit in California. Natamycin is a newly registered biofungicide for postharvest use on citrus and some other fruits. In the study, baseline sensitivity to natamycin in 50 isolates of M. piriformis was determined in vitro. The mean EC50 (effective concentration to inhibit sporangiospore germination by 50%) and MIC (minimum inhibitory concentration to inhibit mycelial growth by 100%) values were 0.59 µg/ml and less than 1.0 µg/ml, respectively. Natamycin at the label rate of 920 µg/ml alone or in combination with 3% potassium sorbate (PS) or 3% sodium carbonate (SC) applied at 20 or 50°C was evaluated for control of Mucor rot on inoculated 'Tango' mandarin fruit. Natamycin alone reduced Mucor rot incidence on stored mandarin fruit from 100% among nontreated control fruit to approximately 30%, a reduction of more than 70% compared to the nontreated control, while 3% PS and 3% SC had no to little control. When applied at 50°C, natamycin and 3% PS reduced Mucor rot incidence by 65.0 and 31.2%, respectively; while natamycin in combination with 3% PS reduced disease incidence by 92.5% compared to the nontreated control after 2 weeks of storage at 5°C. This combined treatment remained effective even when the application of the treatment was delayed for 6 and 12 h after inoculation. However, the effectiveness of the treatments declined when storage was extended to 3 or 4 weeks. Natamycin can be an effective tool to control Mucor rot on mandarin fruit, and minimizing the period of extended storage could help maintain the control efficacy of natamycin.


Assuntos
Frutas , Natamicina , Natamicina/farmacologia , Mucor , Temperatura Alta
7.
Adv Ther ; 40(8): 3332-3359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289410

RESUMO

Fungal keratitis, an ocular fungal infection, is one of the leading causes of monocular blindness. Natamycin has long been considered the mainstay drug used for treating fungal keratitis and is the only US Food and Drug Administration (USFDA)-approved drug, commercially available as a topical 5% w/v suspension. Furthermore, ocular fungal infection treatment takes a few weeks to months to recover, and the available marketed antifungal suspensions are associated with poor residence time, limited bioavailability (< 5%) and high dosing frequency as well as minor irritation and discomfort. Despite these challenges, natamycin is still the preferred drug choice for treating fungal keratitis, as it has fewer side effects and less ocular toxicity and is more effective against Fusarium species than other antifungal agents. Several novel therapeutic approaches for the topical delivery of natamycin have been reported to overcome the challenges posed by the conventional dosage forms and to improve ocular bioavailability for the efficient management of fungal keratitis. Current progress in the delivery systems uses approaches aimed at improving the corneal residence time, bioavailability and antifungal potency, thereby reducing the dose and dosing frequency of natamycin. In this review, we discuss the various strategies explored to overcome the challenges present in ocular drug delivery of natamycin and improve its bioavailability for ocular therapeutics.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Humanos , Natamicina/uso terapêutico , Natamicina/farmacologia , Antifúngicos/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Córnea
8.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175119

RESUMO

This research aimed to investigate natamycin's antifungal effect and its mechanism against the chestnut pathogen Neofusicoccum parvum. Natamycin's inhibitory effects on N. parvum were investigated using a drug-containing plate culture method and an in vivo assay in chestnuts and shell buckets. The antifungal mechanism of action of natamycin on N. parvum was investigated by conducting staining experiments of the fungal cell wall and cell membrane. Natamycin had a minimum inhibitory concentration (MIC) of 100 µg/mL and a minimum fungicidal concentration (MFC) of 200 µg/mL against N. parvum. At five times the MFC, natamycin had a strong antifungal effect on chestnuts in vivo, and it effectively reduced morbidity and extended the storage period. The cell membrane was the primary target of natamycin action against N. parvum. Natamycin inhibits ergosterol synthesis, disrupts cell membranes, and causes intracellular protein, nucleic acid, and other macromolecule leakages. Furthermore, natamycin can cause oxidative damage to the fungus, as evidenced by decreased superoxide dismutase and catalase enzyme activity. Natamycin exerts a strong antifungal effect on the pathogenic fungus N. parvum from chestnuts, mainly through the disruption of fungal cell membranes.


Assuntos
Ascomicetos , Natamicina , Natamicina/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
9.
Int Immunopharmacol ; 116: 109782, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731151

RESUMO

Fungal keratitis is an infectious vision-threatening disease that has a poor prognosis, and the clinical therapeutic drugs have multiple limitations, such as epithelial toxicity and low bioavailability. Therefore, new antifungal treatment strategies must be developed. 4-Methoxycinnamic acid (MCA) is a widely occurring natural phenolic acid that has been proven to have multiple effects, such as antibacterial, antifungal, anti-inflammatory, neuroprotective, and inhibiting cancer. In this research, we explored the effects and underlying mechanisms of MCA on A. fumigatus keratitis and the antifungal effects of the combination of MCA and natamycin (NATA) on A. fumigatus. We found that MCA exerts antifungal effects by inhibiting the synthesis of the fungal cell wall, changing the permeability of fungal cell membranes. Moreover, the MCA-NATA combination exhibited synergy for A. fumigatus. In addition, MCA exerted an anti-inflammatory effect by downregulating the inflammatory factors (IL-1ß, TNF-α, IL-6, and iNOS) in C57BL/6 mice and RAW264.7 cells. The anti-inflammatory mechanism of MCA was associated with the Mincle signal pathway. In summary, MCA acts as a potential therapeutic drug for fungal keratitis and a potential antifungal sensitizer for natamycin. MCA inhibits fungal cell wall synthesis, destroys the permeability of fungal cell membranes, and mediates the anti-inflammatory, immune response of the host.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Animais , Camundongos , Natamicina/farmacologia , Natamicina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Camundongos Endogâmicos C57BL , Infecções Oculares Fúngicas/tratamento farmacológico
10.
Food Microbiol ; 109: 104123, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309453

RESUMO

Biofilms serve as a reservoir for pathogenic and spoilage microorganisms, and their removal from different surfaces is a recurring problem in the beverage industry. This study aimed to investigate the effect of a combination of natamycin (NAT, 0.01 mmol/l) and farnesol (FAR, 0.6 mmol/l) against biofilms on ultrafiltration (UF) membranes and stainless steel (SS) surfaces using apple juice as food matrix. The co-adhesion of Rhodotorula mucilaginosa, Candida tropicalis, C. krusei and C. kefyr (mixed-yeast) with Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7 (multi-species) in presence of NAT + FAR was evaluated for 2, 24, 48 h. In biofilms treated with NAT + FAR were observed by cell quantification and microscopy, inhibition of the filamentous yeast forms, disruption of the tri-dimensional structure and a high detachment of yeast cells. NAT + FAR affected the biofilms independently of the surfaces used and the presence (or not) of bacteria. L. monocytogenes was the most susceptible (p < 0.001) in multi-species biofilms, followed by E. coli O157:H7 on both surfaces (p < 0.001), whereas the growth of S. enterica was reduced (p < 0.05) in SS but not in UF-membranes (p > 0.05). Since the combination NAT + FAR affected the structure and viability of yeast species and foodborne pathogens in multi-species biofilms developed on UF-membranes and SS surfaces, the combination proposed could be considered a promising control agent to prevent biofilms in apple juice processing lines.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Malus , Farneseno Álcool/farmacologia , Malus/microbiologia , Natamicina/farmacologia , Microbiologia de Alimentos , Aço Inoxidável , Leveduras , Biofilmes , Contagem de Colônia Microbiana
11.
ACS Infect Dis ; 9(1): 42-55, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36563312

RESUMO

Natamycin is a macrolide polyene antibiotic, characterized by a potent broad spectrum antifungal activity and low toxicity. However, it is not used for the treatment of systemic mycoses due to its low bioavailability and low solubility in aqueous solutions. In order to create new semisynthetic antifungal agents for treatment of mycoses, a series of water-soluble amides of natamycin were synthesized. Antifungal activities of natamycin derivatives were investigated against Candida spp., including a panel of Candida auris clinical isolates and filamentous fungi. Toxicity for mammalian cells was assayed by monitoring antiproliferative activity against human postnatal fibroblasts (HPF) and human embryonic kidney cells (HEK293). By comparing leakage of contents from ergosterol versus cholesterol containing vesicles, a ratio that characterizes the efficacy and safety of natamycin and its derivatives was determined (EI, efficiency index). Ability of all tested semisynthetic natamycines to prevent proliferation of the yeast Candida spp. cells was comparable or even slightly higher to those of parent antibiotic. Interestingly, amide 8 was more potent than natamycin (1) against all tested C. auris strains (MIC values 2 µg/mL vs 8 µg/mL, respectively). Among 7 derivatives, amide 10 with long lipophilic side chains showed the highest EI and strong antifungal activity in vitro but was more toxic against HPF. In vivo experiments with amide 8 showed in vivo efficacy on a mouse candidemia model with a larger LD50/ED50 ratio in comparison to amphotericin B.


Assuntos
Micoses , Natamicina , Animais , Camundongos , Humanos , Natamicina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Células HEK293 , Polienos/farmacologia , Micoses/tratamento farmacológico , Candida , Saccharomyces cerevisiae , Mamíferos
12.
Am J Trop Med Hyg ; 108(2): 377-383, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572009

RESUMO

This study describes the microbiological and histopathological features of patients with COVID-19-associated rhino-orbital mucormycosis (ROM) seen at the L V Prasad Eye Institute between May and August 2021. Diagnosed clinically and radiologically, 24 patients with ROM were included in the study. Deep nasal swabs or endoscopically collected nasal swabs or orbital tissues were submitted for microbiological evaluation and in vitro susceptibility testing by microbroth dilution for natamycin, amphotericin B, caspofungin, posaconazole, ketoconazole, and voriconazole. Cultures were processed by 28S ribosomal DNA polymerase chain reaction and molecular sequencing. A portion of orbital tissues was also sent for histopathological evaluation. The age of the patients ranged from 27 to 75 (mean 48.58 ± 14.09) years and the majority (79%) were male. Nineteen patients were known to be diabetic prior to developing ROM and 18 patients had recovered from active COVID-19 infection. Thirteen patients had a history of hospitalization during COVID-19 infection and eight received steroids. Of the 24 samples, microbiological evaluation identified Rhizopus arrhizus in 12, Rhizopus microsporus in 9, Lichtheimia ramosa in 2, and Rhizopus delemar in 1. Twelve isolates were tested for antifungal susceptibility and all were susceptible to natamycin and amphotericin B. The susceptibility to posaconazole was high, with minimum inhibitory concentration (MIC) < 2 µg/mL for 10/12 (84%) isolates, whereas the MIC of other drugs varied. Histopathological examination of tissues showed acute fulminant disease, granuloma formation, and vascular invasion by the fungal pathogens in these specimens. Rhizopus arrhizus was predominantly associated with ROM and most isolates were susceptible to amphotericin B and posaconazole. Further studies are needed to corroborate the findings and explain possible underlying links.


Assuntos
COVID-19 , Oftalmopatias , Mucormicose , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Mucormicose/tratamento farmacológico , Mucormicose/epidemiologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Natamicina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Oftalmopatias/tratamento farmacológico , Rhizopus oryzae , Índia/epidemiologia
13.
Food Chem ; 404(Pt B): 134659, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323020

RESUMO

This work fabricated natamycin-loaded zein-casein nanoparticles (N-Z/C NPs) by a pH-driven approach and applied to control postharvest peach brown rot caused by Monilinia fructicola. When casein and phosphoric acid were used as a stabilizer and neutralizing acid, respectively, NPs with mean particle sizes < 100 nm and zeta-potentials < -30 mV could be obtained. The NPs could increase the aqueous dispersibility of natamycin and showed high stability against environmental changes, which could be attributed to both hydrophobic stacking and hydrogen bonds between natamycin and zein. Besides, the effects of N-Z/C NPs on the storage of peach were assessed in vitro and in vivo. Nanoencapsulation did not affect the antifungal activities of natamycin. The NPs with 20 and 80 µg/mL of natamycin could basically inhibit the spore germination and mycelial growth of M. fructicola, respectively. The N-Z/C NPs coatings exhibited better results than natamycin in controlling of peach brown rot.


Assuntos
Nanopartículas , Prunus persica , Zeína , Prunus persica/microbiologia , Natamicina/farmacologia , Caseínas , Frutas/microbiologia , Concentração de Íons de Hidrogênio
14.
Indian J Ophthalmol ; 70(12): 4270-4283, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36453329

RESUMO

Purpose: To study the antifungal susceptibility of common corneal pathogenic fungi to antifungal agents in the North Indian population. Methods: Prospective study of the antifungal sensitivity testing (natamycin, amphotericin B, voriconazole, itraconazole, fluconazole, posaconazole, caspofungin, micafungin) of fungal isolates from 50 cases of culture positive fungal keratitis by using E test method. Details noted included demographic data, visual acuity, clinical details, grade of keratitis, healing time, and success in medical management. Results: Of 50 patients with fungal keratitis (mean age: 40.28 ± 16.77 years), 12 eyes healed within 3 weeks, 14 had a delayed healing response, and 24 had chronic keratitis. Among the 15 cases of Fusarium isolates, 93.3% were sensitive to natamycin, while 40% to amphotericin B; 66.6% to voriconazole, 13.4% to itraconazole and fluconazole each. 80% of Fusarium cases (n = 12) showed susceptibility to posaconazole. Among Aspergillus flavus isolates, 53.4% (n = 8) were sensitive to natamycin, with only 40% (n = 7) showing sensitivity to amphotericin B and good susceptibility to azoles. MIC against susceptible Fusarium spp. for natamycin was 3-16 µg/mL, amphotericin B: 1-8 µg/mL, voriconazole: 0.5-1.5 µg/mL, itraconazole: 0.5-12 µg/mL, posaconazole: 0.094-1.5 µg/mL. MIC against Aspergillus flavus was natamycin: 8-32 µg/mL, amphotericin B: 0.5-16 µg/mL, voriconazole: 0.025-4 µg/mL, itraconazole: 0.125-8 µg/mL, posaconazole: 0.047-0.25 µg/mL; against Aspergillus niger isolates, to natamycin was 6 µg/mL (n=1), amphotericin B 8-12 µg/mL (n = 3), voriconazole: 0.125-0.19 µg/mL (n = 3), itraconazole: 0.38-0.75 µg/mL, posaconazole: 0.064-0.19 µg/mL and against Aspergillus fumigatus (n = 1), was natamycin4 µg/mL, amphotericin B - 8 µg/mL, voriconazole 0.25 µg/mL, itraconazole 1 µg/mL, and posaconazole 0.19 µg/mL. MIC against susceptible Acremonium spp. for natamycin was 1.5-16 µg/mL, amphotericin B: 0.5-8 µg/mL, voriconazole: 0.19-3 µg/mL, itraconazole: 0.125 µg/mL, posaconazole: 0.125-0.5 µg/mL and against susceptible Curvularia was natamycin 0.75-4 µg/mL, amphotericin B 0.5-1 µg/mL, voriconazole 0.125-0.19 µg/mL, itraconazole 0.047-0.094 µg/mL, posaconazole 0.047-0.094 µg/mL. MIC against Mucor spp.+ Rhizopus spp. (n = 1) was natamycin: 8 µg/mL, amphotericin B: 0.75 µg/mL, posaconazole: 1.5 µg/mL. MIC against of Alternaria (n = 1) was voriconazole: 0.19 µg/mL, posaconazole: 0.094 µg/mL. MIC against Penicillium (n=1) was natamycin: 8 µg/mL, voriconazole: 0.25 µg/mL, itraconazole: 0.5 µg/mL, and Posaconazole: 0.125 µg/mL. Conclusion: Our observations highlight the variations in susceptibility to antifungal agents. Posaconazole seems to be effective with low MIC against common corneal pathogenic fungal isolates.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Antifúngicos/farmacologia , Voriconazol/farmacologia , Natamicina/farmacologia , Anfotericina B/farmacologia , Itraconazol/farmacologia , Centros de Atenção Terciária , Fluconazol , Estudos Prospectivos , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/epidemiologia
15.
Biomater Adv ; 136: 212771, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929310

RESUMO

Fungal keratitis is a severe infectious corneal disease with a high rate of incidence and blindness. Since traditional treatments natamycin (NATA) eye drops, exhibit poor dissolution and bioavailability, and the efficacy of current therapeutic approaches remains limited. In this study, we innovatively utilized mesoporous carbon (Meso-C) and microporous carbon (Micro-C) as nanocarriers loaded with the antifungal drug NATA and silver nanoparticles (Ag-NPs). Porous carbon loaded with NATA and Ag-NPs has not previously been studied in fungal keratitis. Due to the mesoporous structure, high surface area and larger pore volume of Meso-C, it displayed greater superiority in sustained drug release and drug dispersity than Micro-C. Moreover, Meso-C could adsorb inflammatory cytokines during fungal infection. In vitro, Meso-C/NATA/Ag showed excellent antifungal effects. In vivo, compared with pure NATA treatment, Meso-C/NATA/Ag exhibited significantly improved therapeutic effects and reduced dosing frequency when treating fungal keratitis. Our study is the first to report the sustained drug release and improved drug dispersity of Meso-C/NATA and demonstrates that NATA and Ag-NPs-loaded Meso-C has therapeutic effects against fungal keratitis.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Nanopartículas Metálicas , Antifúngicos/farmacologia , Carbono/uso terapêutico , Úlcera da Córnea/tratamento farmacológico , Liberação Controlada de Fármacos , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Ceratite/tratamento farmacológico , Natamicina/farmacologia , Prata/farmacologia
16.
J Appl Microbiol ; 133(6): 3438-3450, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35947063

RESUMO

AIMS: The purpose of this study was to explore the potential inhibitory mechanism and assess the feasibility of natamycin as an antifungal agent in the utilization of citrus storage. METHODS AND RESULTS: In this study, the mycelial growth, spore germination as well as germ tube elongations of Geotrichum citri-aurantii and Penicillium digitatum were significantly inhibited by natamycin treatment. The relative conductivities of G. citri-aurantii and P. digitatum mycelia were increased as time went by and the damages of plasma membranes were up to 17.43% and 28.61%. The mitochondria abnormalities and vacuolation were also observed in the TEM. Moreover, the sour rot and green mould decay incidences were reduced to 18.33% and 10% post incubation with G. citri-aurantii and P. digitatum under 300 mg L-1 natamycin application, respectively. For the citrus storage experiment, there was no significant difference in edible rate, juice yield, total soluble solid (TSS) content, titratable acid (TA) and decay incidences of the 'Newhall' navel orange fruit treated with 300 mg L-1 natamycin stored for 90 d. CONCLUSIONS: Natamycin could decrease the expansions of green mould and sour rot and maintain quality and improve storability on citrus fruit. SIGNIFICANCE AND IMPACT OF THE STUDY: This work explores the potential inhibition mechanism of natamycin G. citri-aurantii and P. digitatum and assesses the feasibility of natamycin as an antifungal agent in the utilization of citrus storage.


Assuntos
Citrus , Penicillium , Citrus/microbiologia , Natamicina/farmacologia , Antifúngicos/farmacologia , Aditivos Alimentares , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fungos , Frutas/microbiologia
17.
Biochim Biophys Acta Biomembr ; 1864(11): 184012, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914570

RESUMO

Natamycin is a polyene macrolide, widely employed to treat fungal keratitis and other yeast infections as well as to protect food products against fungal molds. In contrast to other polyene macrolides, such as nystatin or amphotericin B, natamycin does not form pores in yeast membranes, and its mode of action is not well understood. Here, we have employed a variety of spectroscopic methods, computational modeling, and membrane reconstitution to study the molecular interactions of natamycin underlying its antifungal activity. We find that natamycin forms aggregates in an aqueous solution with strongly altered optical properties compared to monomeric natamycin. Interaction of natamycin with model membranes results in a concentration-dependent fluorescence increase which is more pronounced for ergosterol- compared to cholesterol-containing membranes up to 20 mol% sterol. Evidence for formation of specific ergosterol-natamycin complexes in the bilayer is provided. Using nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy, we find that natamycin sequesters sterols, thereby interfering with their well-known ability to order acyl chains in lipid bilayers. This effect is more pronounced for membranes containing the sterol of fungi, ergosterol, compared to those containing mammalian cholesterol. Natamycin interferes with ergosterol-dependent transport of lysine by the yeast transporter Lyp1, which we propose to be due to the sequestering of ergosterol, a mechanism that also affects other plasma membrane proteins. Our results provide a mechanistic explanation for the selective antifungal activity of natamycin, which can set the stage for rational design of novel polyenes in the future.


Assuntos
Natamicina , Proteínas de Saccharomyces cerevisiae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antibacterianos/metabolismo , Antifúngicos/química , Colesterol/química , Ergosterol/química , Lisina/metabolismo , Natamicina/metabolismo , Natamicina/farmacologia , Polienos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo
18.
ACS Appl Bio Mater ; 5(8): 3806-3815, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35862018

RESUMO

Antifungal drug-loaded hyaluronic acid (HA) microgels using conjugation and encapsulation drug-loading techniques were utilized in the treatment of fungal keratitis. Natamycin (NAT) and amphotericin B (AMB) drugs were chemically linked to HA microgels by employing a chemical coupling agent to obtain conjugated (C-) HA:NAT and HA:AMB microgels. Also, these drugs were loaded into the HA microgel network during HA microgel preparation to attain encapsulated (E-) HA:NAT and HA:AMB microgels. The conjugation of drug molecules was confirmed by FT-IR spectra of bare and drug-loaded HA microgels. It was determined that the AMB loading amount was about 4-fold higher for E-HA:AMB in comparison to C-HA:AMB microgels. Furthermore, the antifungal activity of drug conjugated and encapsulated HA:NAT and HA:AMB microgels was tested on Fusarium sp. and compared with the effect of bare drug molecules as control for up to 15 days of incubation time by means of the disc diffusion technique. The antifungal activity of 200 µL at 20 mg/mL concentration of C-HA:NAT and C-HA:AMB microgels was not found to effectively inhibit Fusarium sp. growth after 1 day of incubation, whereas the same concentration of E-HA:NAT and E-HA:AMB microgels totally killed Fusarium sp. for up to 15 days. These E-HA:NAT and E-HA:AMB microgels show no cytotoxicity on the L929 fibroblast cells up to 1000 µg/mL concentration, whereas the free drug molecules destroy the cells even at 100 µg/mL concentration.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Microgéis , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Úlcera da Córnea/tratamento farmacológico , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Ácido Hialurônico/farmacologia , Natamicina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Biol Macromol ; 214: 1-9, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705124

RESUMO

Sweet cherry is prone to senesce and decay due to high postharvest respiration rate and fungal infection. The effects of natamycin-chitosan coating on physicochemical and microbial properties of sweet cherries stored at 4 °C were investigated. Scanning electron microscopy results revealed that natamycin was more uniformly distributed on sweet cherry pericarps with the help of chitosan coating. Respiration rate of sweet cherries was suppressed by chitosan coating during the storage and as a result, total soluble solids (13.53 %-13.80 %) and titratable acidity (0.91 %-0.93 %) were remained higher values and weight loss (2.54 %-2.85 %) was decreased in chitosan and natamycin-chitosan groups. Although both natamycin and chitosan were effective in inhibiting yeast and mold, sweet cherries treated with the combination of natamycin and chitosan showed significantly lower yeast and mold count (3.31 log CFU/g) and decay rate (1.67 %) compared with control. Natamycin combined chitosan inhibited the pathogenic fungi of sweet cherries, such as Alternaria, Cladosporium and Penicillium. These results indicated that postharvest natamycin-chitosan coating has great advantages in maintaining fruit quality, inhibiting fungi, and reducing decay rate of sweet cherry.


Assuntos
Quitosana , Prunus avium , Quitosana/química , Conservação de Alimentos/métodos , Frutas/química , Fungos , Natamicina/farmacologia , Prunus avium/química , Saccharomyces cerevisiae
20.
Vet Ophthalmol ; 25(5): 376-384, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35684950

RESUMO

PURPOSE: To examine the relationship between Minimum Inhibitory Concentration (MICs) and response to therapy of 6 Fusarium spp. and 5 Aspergillus fumigatus isolated from equine ulcerative keratitis cases. PROCEDURE: Fungi were identified by morphology and Internal Transcribed Spacer (ITS) polymerase chain reaction (PCR) with sequencing and evaluated at the University of Texas Fungal Testing Laboratory for susceptibility to three azole antifungals (miconazole, voriconazole, posaconazole), natamycin, and two echinocandins (anidulafungin, caspofungin). A Mann-Whitney rank sum test was used for the comparison of time to heal between infections of different fungal genera and in vitro susceptibility to the drug administered. RESULTS: Fusarium spp. were resistant to azole antifungals in 6/6 cases (100%). Fusarium spp. were susceptible to echinocandins and natamycin in all cases. A. fumigatus was resistant to anidulafungin in 1/5 cases (20%) and posaconazole in 1/5 cases (20%) The remainder of A. fumigatus isolates were susceptible to all antifungal agents tested. Fusarium isolates were treated with antifungals to which they were not susceptible; however, all cases of A. fumigatus were treated with antifungals to which they were susceptible. All Fusarium cases and A. fumigatus cases experienced clinical resolution, regardless of surgical intervention. There was no statistical correlation between fungal genus and time to heal (p < .082). CONCLUSIONS: The in vitro susceptibility indicated that all cases of Fusarium spp. were resistant to azole antifungal drugs which were used as treatment. Clinical outcomes, however, showed that all cases healed despite resistance to antifungals.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Fusarium , Anidulafungina/uso terapêutico , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Úlcera da Córnea/tratamento farmacológico , Úlcera da Córnea/microbiologia , Úlcera da Córnea/veterinária , Equinocandinas , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/veterinária , Cavalos , Testes de Sensibilidade Microbiana/veterinária , Natamicina/farmacologia , Natamicina/uso terapêutico , Voriconazol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...